2,270 research outputs found

    The archaeological contribution of forensic craniofacial reconstruction to a portrait drawing of a Korean historical figure

    Get PDF
    Craniofacial reconstruction (CFR) is a technique used to rebuild the living facial appearance onto a skull in order to recognise or identify an individual. This technique is primarily employed in forensic investigation, but also utilised in archaeological research to recreate the faces of paleontological and archaeological humans. In this study, the face of a 17th century historical figure from Korea was reconstructed utilising computerized tomography from the mummified remains. A geographic surface comparison programme was employed to evaluate the accuracy of the CFR produced using a three-dimensional computerized modelling system. Analysis of the facial tissue depth discrepancies demonstrated that the CFR may have acceptable resemblance to the living face of the historical individual. Using computerised graphic technology, the CFR outcome, along with the archaeological information about the hair style, ornaments, and dress discovered in the tomb, a portrait-styled in the typical drawing trend from the era was created. The research suggests that current CFR techniques can provide an accurate portrait drawing of historical figures in Korea

    BPS Monopole Equation in Omega-background

    Full text link
    We study deformed supersymmetries in N=2 super Yang-Mills theory in the Omega-backgrounds characterized by two complex parameters ϵ1,ϵ2\epsilon_1, \epsilon_2. When one of the ϵ\epsilon-parameters vanishes, the theory has extended supersymmetries. We compute the central charge of the algebra and obtain the deformed BPS monopole equation. We examine supersymmetries preserved by the equation.Comment: 14 pages, typos corrected, published version in JHE

    Leadership and decision-making practices in public versus private universities in Pakistan

    Get PDF
    The goal of this study is to examine differences in leadership and decision-making practices in public and private universities in Pakistan, with a focus on transformational leadership (TL) and participative decision-making (PDM). We conducted semi-structured interviews with 46 deans and heads of department from two public and two private universities in Pakistan. Our findings indicate that leadership and decision-making practices are different in public and private universities. While differences were observed in all six types of TL-behaviour, the following three approaches emerged to be crucial in both public and private universities: (1) articulating a vision, (2) fostering the acceptance of group goals, and (3) high-performance expectations. In terms of PDM, deans and heads of department in public and private universities adopt a collaborative approach. However, on a practical level this approach is limited to teacher- and student-related matters. Overall, our findings suggest that the leadership and decision-making practices in Pakistani public and private universities are transformational and participative in nature

    Cordyceps spp.: A Review on Its Immune-Stimulatory and Other Biological Potentials

    Get PDF
    In recent decades, interest in the Cordyceps genus has amplified due to its immunostimulatory potential. Cordyceps species, its extracts, and bioactive constituents have been related with cytokine production such as interleukin (IL)-1ß, IL-2, IL-6, IL-8, IL-10, IL-12, and tumor necrosis factor (TNF)-a, phagocytosis stimulation of immune cells, nitric oxide production by increasing inducible nitric oxide synthase activity, and stimulation of inflammatory response via mitogen-activated protein kinase pathway. Other pharmacological activities like antioxidant, anti-cancer, antihyperlipidemic, anti-diabetic, anti-fatigue, anti-aging, hypocholesterolemic, hypotensive, vasorelaxation, anti-depressant, aphrodisiac, and kidney protection, has been reported in pre-clinical studies. These biological activities are correlated with the bioactive compounds present in Cordyceps including nucleosides, sterols, flavonoids, cyclic peptides, phenolic, bioxanthracenes, polyketides, and alkaloids, being the cyclic peptides compounds the most studied. An organized review of the existing literature was executed by surveying several databanks like PubMed, Scopus, etc. using keywords like Cordyceps, cordycepin, immune system, immunostimulation, immunomodulatory, pharmacology, anti-cancer, anti-viral, clinical trials, ethnomedicine, pharmacology, phytochemical analysis, and different species names. This review collects and analyzes state-of-the-art about the properties of Cordyceps species along with ethnopharmacological properties, application in food, chemical compounds, extraction of bioactive compounds, and various pharmacological properties with a special focus on the stimulatory properties of immunity.This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1G1A1004667), Republic of Korea

    Relationship between Environmental Phthalate Exposure and the Intelligence of School-Age Children

    Get PDF
    BACKGROUND: Concern over phthalates has emerged because of their potential toxicity to humans. OBJECTIVE: We investigated the relationship between the urinary concentrations of phthalate metabolites and children`s intellectual functioning. METHODS: This study enrolled 667 children at nine elementary schools in five South Korean cities. A cross-sectional examination of urine phthalate concentrations was performed, and scores on neuro-psychological tests were obtained from both the children and their mothers. RESULTS: We measured mono-2-ethylhexyl phthalate (MEHP) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), both metabolites of di(2-ethylhexyl)phthalate (DEHP), and mono-n-butyl phthalate (MBP), a metabolite of dibutyl phthalate (DBP), in urine samples. The geometric mean (ln) concentrations of MEHP, MEOHP, and MBP were 21.3 mu g/L [geometric SD (GSD) = 2.2 mu g/L; range, 0.5-445.4], 18.0 mu g/L (GSD = 2.4; range, 0.07-291.1), and 48.9 mu g/L (GSD = 2.2; range, 2.1-1645.5), respectively. After adjusting for demographic and developmental covariates, the Full Scale IQ and Verbal IQ scores were negatively associated with DEHP metabolites but not with DBP metabolites. We also found a significant negative relationship between the urine concentrations of the metabolites of DEHP and DBP and children`s vocabulary subscores. After controlling for maternal IQ, a significant inverse relationship between DEHP metabolites and vocabulary subscale score remained. Among boys, we found a negative association between increasing MEHP phthalate concentrations and the sum of DEHP metabolite concentrations and Wechsler Intelligence Scale for Children vocabulary score; however, among girls, we found no significant association between these variables. CONCLUSION: Controlling for maternal IQ and other covariates, the results show an inverse relationship between phthalate metabolites and IQ scores; however, given the limitations in cross-sectional epidemiology, prospective studies are needed to fully explore these associations.This work was funded by the Eco-Technopia 21 project of Korea Institute of Environmental Science and Technology (091-081-059).Cho SC, 2010, J CHILD PSYCHOL PSYC, V51, P1050, DOI 10.1111/j.1469-7610.2010.02250.xKim BN, 2009, BIOL PSYCHIAT, V66, P958, DOI 10.1016/j.biopsych.2009.07.034Tanida T, 2009, TOXICOL LETT, V189, P40, DOI 10.1016/j.toxlet.2009.04.005Ghisari M, 2009, TOXICOL LETT, V189, P67, DOI 10.1016/j.toxlet.2009.05.004Barnett JH, 2009, AM J PSYCHIAT, V166, P909, DOI 10.1176/appi.ajp.2009.08081251Kim Y, 2009, NEUROTOXICOLOGY, V30, P564, DOI 10.1016/j.neuro.2009.03.012Engel SM, 2009, NEUROTOXICOLOGY, V30, P522, DOI 10.1016/j.neuro.2009.04.001Kamrin MA, 2009, J TOXICOL ENV HEAL B, V12, P157, DOI 10.1080/10937400902729226Brown JS, 2009, SCHIZOPHRENIA BULL, V35, P256, DOI 10.1093/schbul/sbm147Bellinger DC, 2008, NEUROTOXICOLOGY, V29, P828, DOI 10.1016/j.neuro.2008.04.005Wolff MS, 2008, ENVIRON HEALTH PERSP, V116, P1092, DOI 10.1289/ehp.11007van Neerven S, 2008, PROG NEUROBIOL, V85, P433, DOI 10.1016/j.pneurobio.2008.04.006Hatch EE, 2008, ENVIRON HEALTH-GLOB, V7, DOI 10.1186/1476-069X-7-27Zevalkink J, 2008, J GENET PSYCHOL, V169, P72Kolarik B, 2008, ENVIRON HEALTH PERSP, V116, P98, DOI 10.1289/ehp.10498SATHYANARAYANA S, 2008, CURR PROBL PEDIAT AD, V38, P34KHO YL, 2008, J ENV HLTH SCI, V34, P271Huang PC, 2007, HUM REPROD, V22, P2715, DOI 10.1093/humrep/dem205Janjua NR, 2007, ENVIRON SCI TECHNOL, V41, P5564, DOI 10.1021/es0628755Meeker JD, 2007, ENVIRON HEALTH PERSP, V115, P1029, DOI 10.1289/ehp.9852Fromme H, 2007, INT J HYG ENVIR HEAL, V210, P21, DOI 10.1016/j.ijheh.2006.09.005Xu Y, 2007, ARCH TOXICOL, V81, P57, DOI 10.1007/s00204-006-0143-8Pereira C, 2007, ACTA HISTOCHEM, V109, P29, DOI 10.1016/j.acthis.2006.09.008Hauser R, 2006, EPIDEMIOLOGY, V17, P682, DOI 10.1097/01.ede.0000235996.89953.d7Zhu DF, 2006, BRAIN, V129, P2923, DOI 10.1093/brain/awl215Andrade AJM, 2006, TOXICOLOGY, V227, P185, DOI 10.1016/j.tox.2006.07.022Lottrup G, 2006, INT J ANDROL, V29, P172, DOI 10.1111/j.1365-2605.2005.00642.xBreous E, 2005, MOL CELL ENDOCRINOL, V244, P75, DOI 10.1016/j.mce.2005.06.009Wenzel A, 2005, MOL CELL ENDOCRINOL, V244, P63, DOI 10.1016/j.mce.2005.02.008Kato K, 2005, ANAL CHEM, V77, P2985, DOI 10.1021/ac0481248Tanaka T, 2005, FOOD CHEM TOXICOL, V43, P581, DOI 10.1016/j.fct.2005.01.001Duty SM, 2005, HUM REPROD, V20, P604, DOI 10.1093/humrep/deh656Kota BP, 2005, PHARMACOL RES, V51, P85, DOI 10.1016/j.phrs.2004.07.012Hays T, 2005, CARCINOGENESIS, V26, P219, DOI 10.1093/carcin/bgh285Hauser R, 2004, ENVIRON HEALTH PERSP, V112, P1734, DOI 10.1289/ehp.7212Bornehag CG, 2004, ENVIRON HEALTH PERSP, V112, P1393, DOI 10.1289/ehp.7187Ishido M, 2004, J NEUROCHEM, V91, P69, DOI 10.1111/j.1471-4159.2004.02696.xMink PJ, 2004, EPIDEMIOLOGY, V15, P385, DOI 10.1097/01.ede.0000128402.86336.7eBellinger DC, 2004, EPIDEMIOLOGY, V15, P383, DOI 10.1097/01.ede.0000129525.15064.a4Shea KM, 2003, PEDIATRICS, V111, P1467Tanaka T, 2002, FOOD CHEM TOXICOL, V40, P1499, DOI 10.1016/S0278-6915(02)00073-XHoppin JA, 2002, ENVIRON HEALTH PERSP, V110, P515SATTLER JM, 2001, ASSESSMENT CHILDRENRice D, 2000, ENVIRON HEALTH PERSP, V108, P511Bellinger DC, 2000, NEUROTOXICOL TERATOL, V22, P133LIM YR, 2000, KOR J CLIN PSYCHOL, V19, P563Braissant O, 1998, ENDOCRINOLOGY, V139, P2748Peters JM, 1997, CARCINOGENESIS, V18, P2029Baldini IM, 1997, PROG NEURO-PSYCHOPH, V21, P925Roberts RA, 1997, FUND APPL TOXICOL, V38, P107PARK KS, 1996, DEV KEDI WISC INDIVIMONZANI F, 1993, CLIN INVESTIGATOR, V71, P367SILVERSTEIN AB, 1990, J CLIN PSYCHOL, V46, P333HINTON RH, 1986, ENVIRON HEALTH PERSP, V70, P195KIM MK, 1986, SEOUL J PSYCHIAT, V11, P194KAUFMAN AS, 1976, CONTEMP EDUC PSYCHOL, V1, P1801
    corecore